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1. Introduction

The spinorial geometry technique is an effective tool to solve the Killing spinor equations
of supergravity theories [J]. It is based on the use of gauge symmetry of the Killing spinor
equations, on a description of spinors in terms of forms and on an oscillator basis in the
space of spinors. Recently, it has been adapted to investigate backgrounds with near
maximal number of supersymmetries. In particular it was found that IIB supergravity
backgrounds with 31 supersymmetries, N = 31, are maximally supersymmetric [[]. This
was extended in [fl], using a different method, to show that ITA N = 31 supergravity
backgrounds are also maximally supersymmetric. Later the spinorial geometry approach
was applied to lower-dimensional supergravities! with similar results H.

In this paper, we shall show that the N = 31 backgrounds of eleven-dimensional
supergravity [f], termed as preons in [[J], admit locally an additional Killing spinor and
so they are maximally supersymmetric. Although this result is similar to those in type 11
supergravities mentioned above, there are some differences. To establish the type II results,
the algebraic Killing spinor equations of type II supergravities have been instrumental. The
remaining parallel transport equations were not explicitly solved and instead the result

ITechnical innovations developed for this paper have been applied to establish the results in lower
dimensions. This project precedes those in



followed by an indirect argument. The eleven-dimensional supergravity does not have an
algebraic Killing spinor equation. So to show that the N = 31 backgrounds are locally
isometric to the maximally supersymmetric ones, the parallel transport equation

Dae" =0, r=1,...,31, (1.1)
has to be solved explicitly. For this, one investigates the first integrability condition
Rape” =[Da,Dple" =0, (1.2)

where R is the supercovariant curvature. The stability subgroup, Stab(e), of 31 spinors €
in the holonomy group SL(32, R) is Stab(e) = R*! [§—[[0]. Thus the integrability condition
leaves undetermined 31 components of R represented by 31 two-forms u'yz. The task
is to show that these components vanish as well and so the (reduced) holonomy of the
supercovariant connection for 31 Killing spinors is in fact {1}. To do this, we shall use
a modification of the procedure outlined in [J] which utilizes the normal v of the Killing
spinors € and which is explained in the next section. Then we shall use the Bianchi
identities, the field equations and the explicit expression of R in terms of the fields of
eleven-dimensional supergravity to show that the supercovariant curvature vanishes, R =
0. The latter condition is sufficient to demonstrate that the N = 31 backgrounds are
locally isometric to the maximally supersymmetric ones. The maximally supersymmetric
backgrounds have been classified in [[J], and has been shown to be locally isometric to
Minkowski space R1%!, the Freund-Rubin [[J spaces AdSy x S7 and AdS; x S*, and the
Kowalski-Glikman plane wave [[L3], see also [[14].

On non-simply connected spacetimes, the vanishing of the supercovariant curvature,
R = 0, does not always imply the existence of 32 linearly independent solutions for the
parallel transport equation ([.1). There is also the additional subtlety of the existence
of different spin structures on non-simply connected spacetimes. Since we show that the
N = 31 backgrounds are locally isometric to the maximally supersymmetric ones, one may
be able to construct N = 31 supersymmetric backgrounds by identifying one of the maximal
supersymmetric ones with a discrete subgroup of its symmetry group. A large class of such
backgrounds were constructed in [[[§] after identification with a cyclic subgroup of the

2 This may indicate that

symmetry group. None of these preserve 31 supersymmetries.
non-simply connected backgrounds with N = 31 supersymmetries do not exist but some
further investigation is required to establish this. The absence of N = 31 supersymmetric
backgrounds will be in agreement with a conjecture in [16] which was formulated under
the assumption that the Killing spinors must lie in certain representations of subgroups of
Spin(10,1).

We also show that the N = 15 solutions in type I supergravities are locally maximally
supersymmetric. This easily follows from our result in IIB [B] and the investigation of the
Killing spinor equations of the heterotic supergravity in [L7].

The paper has been organized as follows. In section two, we explain the procedure
we use to investigate backgrounds with 31 supersymmetries and collect some useful formu-

lae. In addition, we show that there are two cases to examine depending on the stability

2We thank J. Figueroa O’Farrill for helpful discussions on this point.



subgroup of the normal v to the 31 Killing spinors in Spin(10,1). In section three, we
investigate the N = 31 backgrounds whose normal v has stability subgroup SU(5), and in
section four we examine the N = 31 backgrounds whose normal v has stability subgroup
(Spin(7) x R®) x R. In both cases, we establish that the N = 31 backgrounds are locally
isometric to the maximally supersymmetric ones. In section five, we examine the N = 15
backgrounds of type I supergravities. In section six, we present our conclusions.

2. Supercurvature and Killing spinors

As we have mentioned, a consequence of the Killing spinor equations is the integrability
condition ([.J). In [{], it was proposed to solve this condition directly. This has been
facilitated by first using the gauge symmetry of the Killing spinor equations to choose the
direction of the normal spinor v of the N = 31 Killing spinors. In turn the gauge symmetry
orients the hyperplane of the 31 Killing spinors along particular directions. This simplifies
the expression for the Killing spinors and then using spinorial geometry the condition
Re" = 0 gives rise to a linear system for the various components of the supercurvature.
The linear system can be solved to give the conditions on R imposed by supersymmetry.
Although this is the original way that we have tackled the problem, it turns out there is a
simpler way to explore the integrability condition ([.J). For this let ¢", » =1,...,N, be a
basis in the space of Killing spinors and extend it as (¢",€%), g = N + 1,...,32 to a basis
in the space of spinors. Then observe that the supercovariant curvature for a background
with N Killing spinors can be written as

RyNab = UMNrp €V + UniNpg €011 (2.1)
where vP are normal to the Killing spinors, a,b =1,...,32 are spinor indices,
B(e",v1) =0, (2.2)

and U are spacetime dependent two-forms. (Throughout this paper we use the conventions
of [1§.) Clearly (R.1) satisfies the integrability condition ([L.3) because of (R.2). Since the
holonomy of the supercovariant connection is contained in SL(32,R), one finds that

Uninpg B(&,09) =0 . (2.3)

Taking into account this condition, the number of independent two-forms U that appear
in (B-1) is 32% — 32N — 1 which is the dimension of the stability subgroup SL(32 — N, R) x
(©NR327V) of N spinors in SL(32,R), see [§- [0, [T

In many cases of interest, the Killing spinors can be (locally) expressed in terms of a
convenient basis 1" as

€ =fn, (2.4)

where f is an N x N invertible matrix of spacetime functions. If (n",7P) is a basis in the
space of spinors, then (@) can be written as

_ D ~p_ 4
RMN,ab = UMN,rp 772”{, + UMN pq 77ng > (2-5)



where U and u are related in a straightforward way.
The supercurvature can be written as

5
1
RMN,ab Z k:_ TMN A1 Ao Ay, (I‘A1A2...Ak)ab’ (2.6)

where T* depends on the frame e and four-form field strength F of eleven-dimensional
supergravity. The relevant expressions® can be found in [0}, [[1]. It is also known that

5
1 (_1)k+1
77a6b - ﬁ ];) k!

This in particular implies that

-1 k+1 ] ~
(TR N) Ay Ayt = %[UMN,@ B(1",T'a,45..4,V") + upinNpg B(P, T 41 4,...4,,77)](2.8)

subject to the condition (2.J) which can now be rewritten as
UpN,pg B(1P,v7) = 0. (2.9)

The conditions (R.§) are equivalent to those that arise from the direct solution of the
integrability condition ([.%). The advantage is that (R.§) is more easy to handle.

The conditions (R.§) and (.9) can be easily adapted to backgrounds with 31 super-
symmetries to find

(_1 k+1

TUMN’T B(?’]T‘,PAlAQMAkV) . (210)

(TZIC:4N)A1A2---AI¢ =

The second term in the r.h.s of (B.§) vanishes because of (2.9). This formula is consistent
with the requirement that the holonomy of the supercovariant connection for N = 31
configurations is in R3!.

Apart from the restrictions required by holonomy and described above, the superco-
variant curvature R satisfies additional conditions which arise from the field equations, the
Bianchi identities of the Riemann curvature R of the spacetime and of the four-form field
strength I’ of eleven-dimensional supergravity, and the explicit expression of the compo-
nents of R in terms of the fields. We can derive some of them by observing that TN Ry is
a linear combination of field equations and Bianchi identities, and so it necessarily vanishes.
In turn this leads to the vanishing of the following linear combinations of the components

of R:

(TZbN)N =0, 4(T]\24N)P]j\f:0’ (TJ\14P1)P2 +%(TJ?4N)P1P2];:0’
2
(TM[Pl)PQPS} - %(TMN)P1P2P3 =0, (T]?/I[Pl)P2P3P4} + %(T]E\ZN)PI"'P4 =0,
1
(Tirp)rer) = 5gerrrs P (Thig,)Qu05 = 0 - (2.11)

3There are some apparent typos in the expression for R in [EI]



The second and third of these equations are consequences of the Einstein and F' field

equations, respectively. We shall also use the additional conditions

(Tarw)p = (Tiun)p) (Tn)po = (Thg)un (Toun)Por =0, (2.12)

which can be easily derived by inspecting the explicit expressions of T* in terms of the
physical fields in [[L1]] and by using the Bianchi identity of F'. Observe that the first condition
in (2.11)) is a consequence of the first condition in (P.13). It will turn out that ([2.11)), (2-19),
the expression of T in terms of the physical fields and the conditions (B.1() are sufficient
for the proof that we shall present.

It has been known for some time that there are two kinds of orbits of Spin(10, 1) in the
space of Majorana spinors of eleven-dimensional supergravity. One has stability subgroup
SU(5) and the other has stability subgroup (Spin(7) x R®) x R [R1], BZ. Therefore, there
are two cases of NV = 31 backgrounds to explore depending on in which orbit the normal
v of the Killing spinors lies. This is similar to the N = 31 IIB backgrounds in [[J]. The
Killing spinor equations for the associated N = 1 eleven-dimensional backgrounds have
been solved in [PJ]. We shall investigate the two N = 31 cases separately.

3. SU(5)-invariant normal

3.1 Integrability conditions

To derive the conditions that the integrability of the Killing spinor equations imposes on the
supercurvature, without loss of generality, we choose the normal of the 31 Killing spinors
as

v=1+eis, (3.1)
in the “time-like” spinor basis of [I§]. Then the Killing spinors can be written as
€ =fran’, (3.2)

where f is a 31 x 31 invertible matrix of real spacetime functions and 7® is a basis of 31

linearly independent Majorana spinors. This basis can be chosen as

’=v=1+epus, )
k_ 5+k _
n" = —iley — $€kqlq2q3q4eq1q2q3q4) 1 = ek + $Ekqlq2q3q4eq1q2q3q4 )
1 1 '
kl ~kl .
=€kl — gequlqmg’eqwzqa ;o0 =i(ew + gequlqmgeqwzqa) ) (3.3)
where k,l =1,...,5. Observe that the linearly independent Majorana spinor ¢ — iej2345 is

not orthogonal to the normal v and so it has been excluded from the basis. It is convenient
for what follows to set §° = " and then choose a ‘holomorphic’ basis for the rest of the

spinors as

0 — na + ,L-na+5 , 964 = ,'704 _ Z~,’70¢+5 ’
08 = P 4B | 9P =



i.e. decompose 31 = 13535010410 in SU(5) representations and so r = (0, o, @, a3, af3).
This has the advantage that the conditions (R.1(]) can be expressed in an SU(5) covariant
manner.

To find the conditions that arise from the integrability condition (R.1(]), it is necessary
to compute the spinor bi-linear forms. These have been presented in appendix A. It is then
straightforward to see that (R.1() implies that

1

unno = —(Tan)os umn,. = (Thn)as  UMNag = 2—\/§i(TJ\24N)aB : (3.5)

In addition, (R.10) gives

(T*)oa = i(T")a
(T%) o5 = —igs(T o,
(T%)opip, = —i(T*)p15, »
(TB)oaB =0,
(T)3,8,85 = 3V263,3,5," (T ars
(Tg)a[§1/§2 = _2(T1)[31952]04’
(T4)051/§2/§3 = _%\/5“51525’3@10{2 (TQ)amtza
(T4)0a5132 = 2i(T1)[BlgBQ}a7 B

(T4)041042043044 = _2\/§€a1a2a3a4ﬁ(Tl)
4N - VAV
(T )aﬁlﬁQﬁs - 3(T )[51529&5]0&’
(
(

)

=y

T4)a1a2*/172 =0, B
(T5)0a1a2a3a4 = 2\/§i5a1a2a3a46(T1)B’
5 Qs (T2 _ _
]; )00315253 - 3Z(T 2[ﬁ1ﬁ29ﬁ3}a’
(T )001025152 = _2(T )0901[31952}02’
T° = 2/2i T!
( )al---a5 160&1---&5( )0 )
5\ _ _ _ _ o 2
(1; )0‘51[5’2/5’3/5’4 - _\/56515253547(T )a“f’
T

1
( )(1’10!2316263 = _6(T )[BIQIO“'BQQBB}Q’Q’ (36)

where we have suppressed the two-form indices. Observe that all 7% have been expressed
in terms of 7! and T2. The above conditions are equivalent to the integrability condi-
tion Re” = 0. Clearly, they do not imply that R = 0. It now remains to impose the

conditions (R.11)) and (2.12).

3.2 Solving the conditions

We shall first show using (R.11), (R.12) and (B.6) that 7' vanishes. For this observe
that (B.6) together with the skew-symmetry of T, (R.13), implies that

2 .l
(Toa)p7 = —Toa0 985 = 0. (3.7)
Using the symmetry property of 72 in (R.13), this leads to

(T37)0a = iTaps =0, (3.8)



and hence the (2,1) and (1,2) parts of T"! vanish. Turning to the field equations, using the
Einstein equation in (.11)) and (B.6), we find that

T0a" =Toas =0,  (T2,)5" = —2iT,,;5. (3.9)
Similarly, the gauge field equation in (R.11]) leads to
Ths, =0. (3.10)

The only remaining component of T is the traceless part of Tola 5 Its relation to T2 is

2 -l
(TQ’B)’YS = _ZTOOJB g,yg . (311)
Tracing this expression with g'yg and using the symmetry in the two pairs of indices of T2,
this gives
2 .l . 1
(To5)y" = —5iTh, 5 = —igeslo,” = 0. (3.12)

The last equality follows from (B.9). Therefore 7% = 0.

It remains to show 72 = 0 as well. An inspection of the conditions we have derived
above reveal that the only non-vanishing components are (Tgﬁ),ﬂ; and (Tazﬁ);yg. The former
vanishes because of the Bianchi identity of T3, (R.13), involving skew-symmetry in two
holomorphic and three anti-holomorphic indices, and the the relation of T3 to T2 in (j.4).
To continue, first observe that from (B.) and 7" = 0, we find that

(T2)5" =0 (3.13)

Next we shall use the expression of 7! and T° in terms of the fluxes F' which can be found
in 1. The condition T" = 0 implies that F' A F' = 0 which in turn implies that

(Tin)ror = s (VmENPor — VNFMPQR) - (3.14)

Now consider the case where all five indices are holomorphic. This component of T2 is
subject to two additional conditions. The first follows from the Bianchi identity for the
gauge field, which states that

(T[iﬁl)ﬁﬁsﬁd = %(VWF&“'@ + 4V, F,p,8,00) = 0. (3.15)

The second condition follows from the relation between T2 and T2 in (B.f) and the trace
condition on T? in (B.13). It implies that

(Ts[ﬁl)ﬁ26364] = %(v@Fﬁl“'@ + v[ﬁlFﬁ25sﬁ4]a) =0. (3.16)

Comparing (B.19) and (B.14), we deduce that V,Fp,...3, = 0. From this it follows that
the T® component with five holomorphic indices vanishes, and this implies that (To%ﬁ) 55 =0.
Therefore T2 = 0.

As we have already mentioned a direct inspection of (B.6) reveals that all T* are
determined in terms of 7! and T2. Thus 7% = 0 and so R = 0. Therefore, the reduced
holonomy of N = 31 backgrounds with an SU(5)-invariant normal is {1}, and so these

backgrounds are locally isometric to the maximally supersymmetric ones.



4. (Spin(7) x R®) x R-invariant normal

4.1 Integrability conditions

The null case can be investigated in a similar way. For this we use the null basis of [[L§]
and choose the normal spinor as

v=14e1234 . (41)

A basis in the space of Majorana spinors orthogonal to v is

L+e1234, (1 —e1231), iles — e1a3as),
€t %Epmmogeowzos ) i(ep — ﬁepmmogem@os) )
€ps5 + %6p01020360102035 ’ i(6p5 o %6p01020360102035) )
i(eP1P2 + %GPIPQﬂIHQeMUm)’ €prps — %epll&m#zemm ,
i(€p1p25 + %6P1P2ﬂ1H2eulﬂ25)’ €p1pa5 — %Eﬂll&#lﬂzemﬂﬁ . (4.2)

For the analysis we shall present below, it is convenient to introduce a new SU(4)-covariant
basis as

0% =i(es —e12345), 0T =i(1 —e1a3a), 67 =1+ eo4,
2 _
07" = 3—\/'_6p0102036010203 . 077 = \/iep,
V2 )
P = ?6p0102036010’2035 5 ep - \/56,;5 )
0777 =V2e5, 07 =V2e5, M\p,v,p,0=1234. (4.3)

It is then straightforward to show using (R.10) and the form bi-linears of appendix A
that

Uy = 4i(T2)}11M’ U_— :7 7_8\/5(1—11)* ) ug = 2\/§i(zj32*,uua U—p = 8\/§(T2)*Pa
Up = _16(T )p, Epauumuﬂlﬁz = 8\/§(T )paa epouumu*ﬂlfm = 8(T3)*po, (4'4)

where the two-form indices of v and 7% have been suppressed. In addition, we find
that (.10) implies the following relations between the T*:

0
(T%)4- = (T%)4p = (T%)45 = 0,
(T%)_; = (

|
=

(1) = (1Y),
(1) = (T8
(T2)PU + 56 pk (T2)ﬂ1ﬂ2 =0,
(T3)+fp = ( 1)p,
(1)1 s = (T%) 139 = (%) 1y = (T%) 45 = 0,



(1%) 4 = ~(1%),,
(T9) s = 1(T%) oo
(T3)hpo = (T2)paa
()0 = (T b00

(T3)010203 = 260102035(1—11)@
(T3)0102ﬁ = 24, [01( )02} )
1
(Ts)*PU + §€P0ﬂlﬂ2(T3)*ﬁ1ﬁ2 =0,

(T4)+fhp = _(Tl)pv
(T4)+—p0 = (1T2)paa
(T 4o = (T%)u 005
4 4 4 4 4
(T )+hp0 = (T )+hp6 = (T )+010203 = (T )+01025 =0,
(T4)fhpo = (1 3)—p07
()t = 7)o

(T4)*010203 = 2(T2) pe 010203 »
(Tj)—0102ﬁ = 25/)[0’11( ®)-to]

(T Z)lholozas = —2(T )/76 10102037
(T )howzﬁ = 1255[01 (T )02]7
(T4)010203U4 = §(T2)ﬂM601020304a
(7;4)0102035 = _35ﬁ[01 (T2)0203} )

(T )p1p25152 =0,
(T5)+—hpa = (1T2)poa
(T5)+—h06 = (T ) 5/)6’
4
(T5)+—01a203 = Q(Tl)pf 0102037
(T5)+—0102p - 25p[01( )02} )
(T5)+h010203 = (T5)+h0102ﬁ =0,
(T5)+01020304 = (T5)+010203/7 = (T5)+0102/71ﬁ2 =0,
2
(T5g—h010203 —2(T*)- p6 010203 )
(T )—h0102ﬁ = _125ﬁ[01( )\7|02],
(T5)—0102U3O4 = (i(Ts)—M‘u + Q(Tl)—)601020304 )
(1;5)*010203ﬁ = _355[01 (TS)\—|02T3}a
(T )—01025152 = _2501[/315;72}02(T )—
(T5)h01020304 = §(T2)ﬂM6010203U4a
(T5)h010203ﬁ - _35ﬁ[01 (T2)0203}7
(T5)h0102/71ﬁ2 =0,
1
(T5)010203U4ﬁ = 2601020304(T )ﬁ’
1
(T5)010203/71ﬁ2 = 65p1[01502\p2(T )03] . (4'5)

Observe that all components T* of the supercurvature R are determined in terms of 7',
T? and T3.



4.2 Solving the conditions

We shall now use (B.11), (B-13) and the explicit expressions of T* in terms of the physical
fields which can be found in [[[1] to show that R = 0. Since all the components of R
in this case depend of T, T? and T3, let us first show that 7' = 0. Due to ([£J) and
the skew-symmetry of (T]b ~) P, the only possible non-vanishing components of T up to
complex conjugation are (T, ) ps, (15, ,)a> (Toy)— (Ths)—

p1P2 P1pP2
First consider the condition on 7% in (B-13). Taking @ = b, this implies that T satisfies
5152 (il 1 1A
(Tpllpg)U = (Tpllpg)a = 0? (Tpllpg)* = _%6P1P2010—2 (Tﬁlag)*a (Tpa')* = %(T)\ )*gpﬁ-
(4.6)

Next turn to the conditions in (R.11)). From (Tuz[_)pa] - %(T;INLP&N =0, we find

(Ths)— = —(Ty*)—0ps , (4.7)
which implies that
(T)5)- = 0. (4.8)
In addition (7}, ,,)— + 5(T5 y)p,—" = 0 implies that
A 1
A 1 3
(lej\) p2— = _2(Tp1p2)* + Z(Tplpg)fﬂﬂ . (49)

Combining this result with the condition (sz[o)—h] - %(T;‘N)U_hN = 0, which yields

(T2 5P po = —A(TL ) + =

o T3 )i, (4.10)

we find (T),,)- = 0. Hence T" = 0.
We now turn our attention to 72. From ([Lj) and the symmetry property in (2.13),
it follows that (T3, x)p+ = (T3, )N = (TJ%n)MN = 0. Furthermore, (T4 x)pe = (T2 )MN

po
are self-dual, and (T y)ps = (I%)mn are determined in terms of the trace.

po
Let us first consider the case where all four indices are of SU(4) type. From (TgN)aN =
0 and (T[:Zlm)al&?ﬂ] = 0, we find respectively

(T2)5" = 15905 (T2, (T2 ,))0050 = —2(T2 (4.11)

p1p2 71 [pl)aﬂ@ :

By taking the trace of the second equation, we conclude that these expressions vanish.
Hence the equations imply that (Tg1 02)5152 = (T35) »5 = 0. Furthermore, (T[‘Z 1p2) psaiy] = 0
implies that (T7,),5 = 0. Therefore 7% with only SU(4) indices vanishes.

Next we consider the case where one of the indices equals —. From (TpZN),N =0 and

(Tz[Pl)PQPS} - %(TEN)lepsN = 0, we find that

(T2,)0” = =4(Tn) ", (T2, papsl = T2€01000s" (T25)0" (4.12)
In addition, we explore the relations of 7% which arise from (T[‘E’pl) paps—] = 0, (T[‘E&) prpa] =
0, (Tg[_)am] — H(T4) 010, =0 and (Tf[_)a@] ~ HT4) 5,5, = 0 to find

(Tfﬁ[pl)mpl’s]— - 2(T3[p1)p2p3] )

,10,



(T%),gem}‘S : (4.13)
From the two expressions above with three holomorphic indices it follows that

(Tz[pl)pzps} = %6P1p2P3 (TEO') (4'14)

Combining this with (f.13), we conclude that these expressions vanish, and therefore
(T2 )ox = 0. Then, the definition for (Th )p1pa— and its complex conjugate imply that
(T?,)ox = 0. Therefore T? with three SU(4) indices also vanishes.

The only remaining non-vanishing components are (72 p)_g and (T2 p)—a- First, note
that (72 p),o is symmetric in the interchange of p and o, while in terms of F' it is given by

(sz)—a = (Tip)*oh = %V_FP*UH ; (415)

which is skew-symmetric in the interchange and so (12,)_, = 0. Similarly, (12,)_5 =

(T2,)—, while
(@2) 0= (1) = AV Fy gy = 4V Fy_ = —(1%),.  (416)

Hence this component also vanishes. Therefore we conclude that 72 = 0.
It remains to consider 72, and in particular the components (7°),,— and (T%),—

The vanishing of ( MN)IW for M = —,t, p, p implies that
(Tif);wf = (Tin)uvf = (Tip)wf* - (Ti[—,)“,,, =0. (4.17)
From the vanishing of (T, N)_WN for M = —, p, p, we also get
(Téh);wf = (Ttiy);wf - (Tugﬁ);wf =0. (4.18)

Next, note that

1
3 3 3
(T—p)—5102 - (T—ol) —02p — 4(T—al)pp—gpf2 9 (4'19)
and on symmetrizing this expression in o1, o2 and taking the trace, we find (7 Ce = =0
and hence (TEP),(;I;TQ =0.
Combining the Bianchi identity for F' with
(Tépl)p25152 = %(V*me&l@ - vpl F*p25152) =0, (4'20)

we find that V, F_,,5,5, = 0 and hence (Tp31p2) _&,5, vanishes. (Tglm)gl@_ = 0 due to the

duality condition in (.§). Finally, the Bianchi identity for F' together with

(Tip)AlA25’ =

(Tg)f)ph)e =

(vap)q)\Q& - va—A1>\25') = 0’

1
6
%(V5F*P>\1>\2 - v—Fﬁpklh) =0, (4'21)
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imply that V,F_,,z = V5F_,,, = 0, and hence (T[?&)_AIAQ = 0. Hence (T3),,— = 0.
In order to show that the remaining components of (1) u— also vanish, note that

(T3 3) ™ =0 for M = —.t,p,pin (B-11) implies

(T3 o = (T3 po— = (T3 )y = (T3 p)yo— =0, (4.22)

and the vanishing of (T4, )—us’ for M = —, p implies
(Téu)w?* = (Thgp)w?f =0. (4.23)
Next, as we have shown that V,F_,,z = 0, this implies (Tg’1 p2) ur— = 0, and hence
(T3 5, ur— = 0. Also, (T?;,)5,, = 0 from ([E19). Lastly, by taking traces of the constraint
(11[3;152)0'1527] = 0 and USing (T§101)5252— - (ngég)plal— = 07 we ﬁnd (T31ﬁ2)0'15'2— = O

Hence (T3),7— = 0. These conditions are then sufficient to show that T2 = 0.

As we have already mentioned, T% are determined from 7%, T2 and T3. Since T' =
T? =T3 =0, T" =0 and so R = 0. Therefore, the reduced holonomy of N = 31 back-
grounds with a (Spin(7) x R®) x R-invariant normal is {1}, and so these backgrounds are
locally isometric to maximally supersymmetric ones. Combining this result with that of the
previous section section, we conclude that all N = 31 backgrounds of eleven-dimensional
supergravity admit locally an additional Killing spinor and so they are maximally super-
symmetric.

5. N =15 in type I supergravities

The non-existence of N = 15 supersymmetric backgrounds in type I supergravities can be
easily seen by combining the results of and [[7. In particular, the normal to the 15
Killing spinors has stability subgroup Spin(7) x R8. So there is only one case to consider.
It is convenient to choose

V=ey — €134 . (51)

Then combining the conditions of the backgrounds with Killing spinors that have stability
subgroup R® and those that have stability subgroup Gs in (7, one finds that the dilaton
® is constant and the non-vanishing components of H are H_;;, where i,j = 1,...8. The
dilatino Killing spinor equation becomes

H_ ;T 9 =0. (5.2)

The existence of a non-trivial solution for this equation is equivalent to requiring that there
are seven linearly independent spinors in the chiral or anti-chiral representation of Spin(8),
depending on conventions, with a non-trivial stability subgroup. This is not the case and
so H = 0. Similarly, the integrability condition of the gravitino Killing spinor equation
implies that the supercovariant curvature of the connection with torsion vanishes, R=o.
Since H = 0, R = R =0, the Riemann curvature of the spacetime vanishes. The rest of the
fluxes, e.g. gauge field strengths, can also be shown to vanish. Therefore, the spacetime is
locally isometric to Minkowski space with constant dilaton, and vanishing three-form and
gauge field fluxes.

- 12 —



6. Concluding remarks

We have shown that eleven-dimensional supergravity backgrounds with 31 supersymmetries
are locally isometric to maximally supersymmetric ones. This result together with that
of [L1] (locally) classify the supersymmetric backgrounds of eleven-dimensional supergravity
with N = 31 and N = 32 supersymmetries. The Killing spinor equations of eleven-
dimensional supergravity for the N = 1 backgrounds have been solved in [R3J]. So far,
these are the only three cases in eleven-dimensions that the geometry of the backgrounds
has been identified for a given N. Furthermore, the result of this paper together with
those obtained in [[] and [f] rule out the existence of N = 31 solutions in eleven- and type
II ten-dimensional supergravities. In addition, a straightforward argument can rule out
the existence of N = 15 backgrounds in type I ten-dimensional supergravities. In lower-
dimensions, a similar conclusion has been reached for the cases that have been investigated
in [f]. There are many more lower dimensional cases that can be explored.

It is clear from the cases that have been examined so far that backgrounds with Ny . —1
number of supersymmetries are severely restricted. This raises the possibility that there
are much less supersymmetric backgrounds in ten and eleven dimensions than those that
may have been expected from the holonomy argument of [§-[0, [[J]. In the proof that the
N = 31 eleven-dimensional backgrounds admit 32 supersymmetries, we have used both
the conditions that arise from the Killing spinor equations as well as field equations and
Bianchi identities. It has been the field equations and Bianchi identities that enforced the
condition that the supercovariant curvature vanishes — the conditions arising from the
Killing spinor equations were not sufficient. Dynamical information has been necessary to
construct the proof. This is unlike the type II theories where the Killing spinor equations
were sufficient to establish the result.

Another property of the N = 31 backgrounds in eleven or ten dimensions is that the
stability subgroup of Killing spinors in Spin(10, 1) or Spin(9, 1) is trivial, i.e. stab(e) = {1}.
These are the first examples, other than those with maximal supersymmetry, that have
this property. It is encouraging that it turned out to be that such backgrounds are in fact
maximally supersymmetric. This may suggest that even backgrounds with a small number
of Killing spinors but with a trivial stability subgroup in the gauge group of the Killing
spinor equations are severely restricted, though it is possible that such new backgrounds
exist. If this is the case, the classification of supersymmetric backgrounds in ten and
eleven dimensions may be somewhat simplified. It would be worth investigating more such
examples in the future.
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A. Spacetime form spinor bi-linears

In the computation of the conditions that arise from the integrability condition Re” = 0,
we have used the form spinor bi-linears of the SU(5)-invariant normal spinor v and a basis
o, (@), that spans the 31 Killing spinors. These bi-linears are defined as

1
Tr_k:' (9 L4, a,. A ) eAtAed2 Ao efh (A.l)

In particular the non-vanishing components of the one-forms are

=28, =-2. (A.2)
The two-forms are
. . ) . Yo
T& = —2i67 723 = —2ig,5, Tgﬁ = 4\/525[7043] ) (A.3)
The three-forms are
a3 . ) 1) )
TOaﬁ 4\/_5[ R 7',?‘167273 = 416,\/17273043, Tasy = —400,95)5 - (A.4)
The four-forms are
8 a3 Ty ’ _ &
T(%/wﬂs 46“/1’72“/3aﬁ;3 7—00[/31[32*/ - 416[0/[319/32]7’ Tglﬁ2ﬁ3/34 - 4\/56515253540{’
(e} - cQY
Ty1v273%4 = _12\/516[71y29“/3]*/4 ) (A.5)
and the five-forms are
& _ . & ap _ af 0 _ _
7851ﬁ2ﬁ3ﬁ4 - 4\/526171525354@’ TOyiy2v391 — 12\/56[71729%}74 v Toapis = 49a[§g|5‘5] ’
0 . . G O
TO{10¢20¢30¢4O¢5 = _4\/5260!10!2030!4@5 ’ 5{115;%354'\/ 81651626364 [04162/‘2
7—31/32/337172 = _125%1952|71\953]W2 ) (A.6)
where we have used 6°172 = §%1 5%
[a1az] (1 "]

Similarly, in the computation of the integrability conditions of N = 31 backgrounds
with a (Spin(7) x R®) x R-invariant normal spinor v, we have used the spacetime form
spinor bi-linears of v with the elements of the spinor basis ([.3). In particular, we find that

the one-forms are

_=—2V2, 7P, =—20P, (A7)
the two-forms are
5 = 2085, T:h =22, TPy = =227,
e = =207, dijie = 4\/_5;6(17#27 7 T uipe = —2v/2¢" Hip2 (A.8)
the three-forms are
Thhp& = —2i5p5, Tt —p5 = 2\/_Z5pg, T_p,ho = —2\/§5g,
7o = 285, T or00n = ~40300,00 1 51500 = —4€515554
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PO = 8§P7

—p5 _4.pE
T e =4 s

—H1H2 H1p2o
Tﬁ&ﬂﬂlfm = _4\/_5,2?#27 Tﬁ&ﬂﬂll@ = 2\/§€pau1u2 ) (A.Q)
the four-forms are
Th+*p6 = 21005, Thmpzpsm = di€p, popspa> T+—hp<7' = 2\/52'6/)5 )
Tﬁpfologj\ = _4\/_6>\ [01 % 7_7[)*515253 = _4\/§Ep515253 >
TP 4 pe = =208, T”nm@;\ = 45A[01502], T v616065 = —4€ 5,504 »
Tﬁﬁa*ﬂﬂlfm Séu?uw Tﬁﬁ&*hmm = —4¢”? H1p2 s
Tﬁ6+*ﬂ1ﬁ2 4\/—5537“2’ Tp&Jr*ﬂlM = _2\/—6 H1p2 >
707 o oamar = —12V/2 5A[(,1502503], P75 osos = 4V 26010505 }sAJ,
(A.10)
and the five-forms are
n+7hp6 = _2i5p6= Tuu0'1020'304 = —di€s 000304 5
7—_*0102ﬁ1/72 = 4\/5601[51652}02’ 7——’—*01020304 = _4\/§i601020304 5
T —o1000304 = _4\/5601020304 )
T boioan = —4\/§5X[015§2]a T oro0ms = —AV2€ 515,05 ,
Tp+—01025\ = _45)\[01622} Tp+*515253 = _46p515253 )
TP or0a03p1ps = 1205, [o1 602\52|553}a TP 61525354 = _45§661626364 )
TP aran = 245A[(,15g25g D T 5000 = —S€ar0a0s [552} ’
Tﬁ6+—hﬂ1ﬂ2 = _4\/_55(17;12’ Tﬁ6+—hu1uz = 2\/5556;”#2 )
TP 1 a5an = 12205, 02,02 s T Sovoars = — IV 2€4, 590, 91 (A.11)

The components of 77 and 777 are obtained from the above expressions by complex con-

jugation.
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